Cargando…
The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods
State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store the...
Autores principales: | Jin, Xue-Bo, Robert Jeremiah, Ruben Jonhson, Su, Ting-Li, Bai, Yu-Ting, Kong, Jian-Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002332/ https://www.ncbi.nlm.nih.gov/pubmed/33809743 http://dx.doi.org/10.3390/s21062085 |
Ejemplares similares
-
Modeling and Analysis of Data-Driven Systems through Computational Neuroscience Wavelet-Deep Optimized Model for Nonlinear Multicomponent Data Forecasting
por: Jin, Xue-Bo, et al.
Publicado: (2021) -
Parameter-Free State Estimation Based on Kalman Filter with Attention Learning for GPS Tracking in Autonomous Driving System
por: Jin, Xue-Bo, et al.
Publicado: (2023) -
Location estimation based on feature mode matching with deep network models
por: Bai, Yu-Ting, et al.
Publicado: (2023) -
A Data-Driven Method for the Estimation of Truck-State Parameters and Braking Force Distribution
por: Chu, Qunyi, et al.
Publicado: (2022) -
Data-driven computational methods: parameter and operator estimations
por: Harlim, John
Publicado: (2018)