Cargando…
Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm
Optical fiber characterization using whispering gallery mode resonances of the fiber itself has been demonstrated to be a powerful technique. In this work, we exploit the thermal sensitivity of whispering gallery mode resonances to characterize the pump-induced temperature increment in holmium doped...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002426/ https://www.ncbi.nlm.nih.gov/pubmed/33802677 http://dx.doi.org/10.3390/s21062094 |
Sumario: | Optical fiber characterization using whispering gallery mode resonances of the fiber itself has been demonstrated to be a powerful technique. In this work, we exploit the thermal sensitivity of whispering gallery mode resonances to characterize the pump-induced temperature increment in holmium doped and holmium-ytterbium codoped optical fibers. The technique relies on the measurement of the resonances’ wavelength shift due to temperature variation as a function of the pump power. Holmium doped fibers were pumped to the second excited level [Formula: see text] I [Formula: see text] of the Ho [Formula: see text] ion using a laser diode at 1125 nm and ytterbium-holmium codoped fibers to the [Formula: see text] F [Formula: see text] level of the Yb [Formula: see text] ion by a laser diode at 975 nm. Our results demonstrate that pumping ytterbium-holmium codoped fibers at 975 nm results in dramatic thermal effects, producing a temperature increment two orders higher than that observed in holmium doped fibers pumped with a 1125 nm laser diode. |
---|