Cargando…
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
Bearings are complex components with onlinear behavior that are used to mitigate the effects of inertia. These components are used in various systems, including motors. Data analysis and condition monitoring of the systems are important methods for bearing fault diagnosis. Therefore, a deep learning...
Autores principales: | Piltan, Farzin, Duong, Bach Phi, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002521/ https://www.ncbi.nlm.nih.gov/pubmed/33802732 http://dx.doi.org/10.3390/s21062102 |
Ejemplares similares
-
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
por: Piltan, Farzin, et al.
Publicado: (2023) -
Crack Size Identification for Bearings Using an Adaptive Digital Twin
por: Piltan, Farzin, et al.
Publicado: (2021) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
por: Duong, Bach Phi, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Using an Extended Variable Structure Feedback Linearization Observer
por: Piltan, Farzin, et al.
Publicado: (2018)