Cargando…

Functionalization of PET with Phosphazene Grafted Graphene Oxide for Synthesis, Flammability, and Mechanism

Significant improvement in the fire resistance of polyethylene terephthalate (PET) while ensuring its mechanical properties is a tremendous challenge. A novel flame retardant (GO-HCCP, graphene oxide-hexachlorocyclotriphosphazene) was synthesized by nucleophilic substitution of the graphene oxide (G...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Lifei, Wang, Rui, Zhu, Zhiguo, Wang, Wenqing, Wu, Hanguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002576/
https://www.ncbi.nlm.nih.gov/pubmed/33802797
http://dx.doi.org/10.3390/ma14061470
Descripción
Sumario:Significant improvement in the fire resistance of polyethylene terephthalate (PET) while ensuring its mechanical properties is a tremendous challenge. A novel flame retardant (GO-HCCP, graphene oxide-hexachlorocyclotriphosphazene) was synthesized by nucleophilic substitution of the graphene oxide (GO) and hexachlorocyclotriphosphazene (HCCP) and then applied in PET by an in situ polymerization technique. The scanning electron microscope (SEM) showed a better dispersion of GO-HCCP than GO in the PET matrix. The char yield at 700 °C increased by 32.5% with the addition of GO-HCCP. Moreover, the peak heat release rate (pHRR), peak smoke produce rate (pSPR)and carbon monoxide production (COP)values significantly decreased by 26.0%, 16.7% and 37.5%, respectively, which indicates the outstanding fire and smoke suppression of GO-HCCP. In addition, the composites exhibited higher elastic modulus and tensile strength without compromising the toughness of PET matrix. These significantly reduced fire hazards properties are mainly attributed to the catalytic carbonation of HCCP and the barrier effect of GO. Thus, PET composites with good flame-retardant and mechanical properties were prepared, which provides a new strategy for further flame retardant PET preparation.