Cargando…
A Comparative Study on Supervised Machine Learning Algorithms for Copper Recovery Quality Prediction in a Leaching Process
The copper mining industry is increasingly using artificial intelligence methods to improve copper production processes. Recent studies reveal the use of algorithms, such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product q...
Autores principales: | Flores, Victor, Leiva, Claudio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002852/ https://www.ncbi.nlm.nih.gov/pubmed/33803046 http://dx.doi.org/10.3390/s21062119 |
Ejemplares similares
-
Comparing different supervised machine learning algorithms for disease prediction
por: Uddin, Shahadat, et al.
Publicado: (2019) -
Application of
Machine Learning in a Mineral Leaching
Process—Taking Pyrolusite Leaching as an Example
por: Zhang, Zheng, et al.
Publicado: (2022) -
Supervised Algorithms of Machine Learning for the Prediction of Cervical Cancer
por: F., Asadi, et al.
Publicado: (2020) -
Predicting cash holdings using supervised machine learning algorithms
por: Özlem, Şirin, et al.
Publicado: (2022) -
A Comparative Study of Supervised Machine Learning Algorithms for the Prediction of Long-Range Chromatin Interactions
por: Vanhaeren, Thomas, et al.
Publicado: (2020)