Cargando…
MYB-Mediated Regulation of Anthocyanin Biosynthesis
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through diffe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002911/ https://www.ncbi.nlm.nih.gov/pubmed/33803587 http://dx.doi.org/10.3390/ijms22063103 |
_version_ | 1783671565210091520 |
---|---|
author | Yan, Huiling Pei, Xiaona Zhang, Heng Li, Xiang Zhang, Xinxin Zhao, Minghui Chiang, Vincent L. Sederoff, Ronald Ross Zhao, Xiyang |
author_facet | Yan, Huiling Pei, Xiaona Zhang, Heng Li, Xiang Zhang, Xinxin Zhao, Minghui Chiang, Vincent L. Sederoff, Ronald Ross Zhao, Xiyang |
author_sort | Yan, Huiling |
collection | PubMed |
description | Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health. |
format | Online Article Text |
id | pubmed-8002911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80029112021-03-28 MYB-Mediated Regulation of Anthocyanin Biosynthesis Yan, Huiling Pei, Xiaona Zhang, Heng Li, Xiang Zhang, Xinxin Zhao, Minghui Chiang, Vincent L. Sederoff, Ronald Ross Zhao, Xiyang Int J Mol Sci Review Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health. MDPI 2021-03-18 /pmc/articles/PMC8002911/ /pubmed/33803587 http://dx.doi.org/10.3390/ijms22063103 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Yan, Huiling Pei, Xiaona Zhang, Heng Li, Xiang Zhang, Xinxin Zhao, Minghui Chiang, Vincent L. Sederoff, Ronald Ross Zhao, Xiyang MYB-Mediated Regulation of Anthocyanin Biosynthesis |
title | MYB-Mediated Regulation of Anthocyanin Biosynthesis |
title_full | MYB-Mediated Regulation of Anthocyanin Biosynthesis |
title_fullStr | MYB-Mediated Regulation of Anthocyanin Biosynthesis |
title_full_unstemmed | MYB-Mediated Regulation of Anthocyanin Biosynthesis |
title_short | MYB-Mediated Regulation of Anthocyanin Biosynthesis |
title_sort | myb-mediated regulation of anthocyanin biosynthesis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002911/ https://www.ncbi.nlm.nih.gov/pubmed/33803587 http://dx.doi.org/10.3390/ijms22063103 |
work_keys_str_mv | AT yanhuiling mybmediatedregulationofanthocyaninbiosynthesis AT peixiaona mybmediatedregulationofanthocyaninbiosynthesis AT zhangheng mybmediatedregulationofanthocyaninbiosynthesis AT lixiang mybmediatedregulationofanthocyaninbiosynthesis AT zhangxinxin mybmediatedregulationofanthocyaninbiosynthesis AT zhaominghui mybmediatedregulationofanthocyaninbiosynthesis AT chiangvincentl mybmediatedregulationofanthocyaninbiosynthesis AT sederoffronaldross mybmediatedregulationofanthocyaninbiosynthesis AT zhaoxiyang mybmediatedregulationofanthocyaninbiosynthesis |