Cargando…
Prediction of Bead Geometry with Changing Welding Speed Using Artificial Neural Network
Bead size and shape are important considerations for industry design and quality detection. It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a continually changing welding process due to the complex interrelationship between different welding parameters and...
Autores principales: | Li, Ran, Dong, Manshu, Gao, Hongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003179/ https://www.ncbi.nlm.nih.gov/pubmed/33803767 http://dx.doi.org/10.3390/ma14061494 |
Ejemplares similares
-
Optimization of Bead Geometry during Tungsten Inert Gas Welding Using Grey Relational and Finite Element Analysis
por: Hanif, Muhammad, et al.
Publicado: (2023) -
Dynamic Modeling of Weld Bead Geometry Features in Thick Plate GMAW Based on Machine Vision and Learning
por: He, Yinshui, et al.
Publicado: (2020) -
Role of Bead Sequence in Underwater Welding
por: Tomków, Jacek, et al.
Publicado: (2019) -
Advantages of the Application of the Temper Bead Welding Technique During Wet Welding
por: Tomków, Jacek, et al.
Publicado: (2019) -
Influence of Inclination of Welding Torch on Weld Bead during Pulsed-GMAW Process
por: Yao, Ping, et al.
Publicado: (2020)