Cargando…

A Facile Solution Engineering of PEDOT:PSS-Coated Conductive Textiles for Wearable Heater Applications

To enable highly conductive electronic textiles (E-textiles), we herein demonstrate a simple solution treatment of poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS)-coated textiles by dimethyl sulfoxide (DMSO) and methanol. The subsequent solution engineering of DMSO and methan...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, In Su, Lee, Jea Uk, Jung, Jae Woong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003570/
https://www.ncbi.nlm.nih.gov/pubmed/33808605
http://dx.doi.org/10.3390/polym13060945
Descripción
Sumario:To enable highly conductive electronic textiles (E-textiles), we herein demonstrate a simple solution treatment of poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS)-coated textiles by dimethyl sulfoxide (DMSO) and methanol. The subsequent solution engineering of DMSO and methanol not only enhances crystallization of PEDOT chains but also the contact for PEDOT:PSS to the fibers. Additionally, the methanol dipping effectively removes the insulating PSS part from the conductive PEDOT chains, which contributes to subsequently reduced sheet resistance of less than 3 Ω/sq of the conductive textiles. Joule heating property of the highly conductive textiles achieves the maximum temperature with the temperature reaching 133 °C at a low applied voltage of 3 V within 20 s, which promises highly conductive E-textiles as multi-functional wearable heater applications.