Cargando…
Association of Preterm Birth with Depression and Particulate Matter: Machine Learning Analysis Using National Health Insurance Data
This study uses machine learning and population data to analyze major determinants of preterm birth including depression and particulate matter. Retrospective cohort data came from Korea National Health Insurance Service claims data for 405,586 women who were aged 25–40 years and gave births for the...
Autores principales: | Lee, Kwang-Sig, Kim, Hae-In, Kim, Ho Yeon, Cho, Geum Joon, Hong, Soon Cheol, Oh, Min Jeong, Kim, Hai Joong, Ahn, Ki Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003604/ https://www.ncbi.nlm.nih.gov/pubmed/33808913 http://dx.doi.org/10.3390/diagnostics11030555 |
Ejemplares similares
-
Association of Preterm Birth with Inflammatory Bowel Disease and Salivary Gland Disease: Machine Learning Analysis Using National Health Insurance Data
por: Lee, Kwang-Sig, et al.
Publicado: (2022) -
COVID-19 and vaccination during pregnancy: a systematic analysis using Korea National Health Insurance claims data
por: Ahn, Ki Hoon, et al.
Publicado: (2022) -
Seasonal Pattern of Preterm Births in Korea for 2000–2012
por: Woo, Yoonmi, et al.
Publicado: (2016) -
Associations of Preterm Birth with Dental and Gastrointestinal Diseases: Machine Learning Analysis Using National Health Insurance Data
por: Song, In-Seok, et al.
Publicado: (2023) -
Recurrent Risk of Preterm Birth in the Third Pregnancy in Korea
por: Ouh, Yung-Taek, et al.
Publicado: (2018)