Cargando…
Robust Estimation for Bivariate Poisson INGARCH Models
In the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models, parameter estimation is conventionally based on the conditional maximum likelihood estimator (CMLE). However, because the CMLE is sensitive to outliers, we consider a robust estimation method for bivariate...
Autores principales: | Kim, Byungsoo, Lee, Sangyeol, Kim, Dongwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003669/ https://www.ncbi.nlm.nih.gov/pubmed/33808839 http://dx.doi.org/10.3390/e23030367 |
Ejemplares similares
-
Monitoring parameter change for bivariate time series models of counts
por: Lee, Sangyeol, et al.
Publicado: (2023) -
Robust Change Point Test for General Integer-Valued Time Series Models Based on Density Power Divergence
por: Kim, Byungsoo, et al.
Publicado: (2020) -
Forecasting emergency department arrivals using INGARCH models
por: Reboredo, Juan C., et al.
Publicado: (2023) -
Bivariate Discrete Poisson–Lindley Distributions
por: Papageorgiou, H., et al.
Publicado: (2022) -
A Systematic Review of INGARCH Models for Integer-Valued Time Series
por: Liu, Mengya, et al.
Publicado: (2023)