Cargando…
Remarkable Thermal Conductivity of Epoxy Composites Filled with Boron Nitride and Cured under Pressure
This work demonstrates that the application of even moderate pressures during cure can result in a remarkable enhancement of the thermal conductivity of composites of epoxy and boron nitride (BN). Two systems have been used: epoxy-thiol and epoxy–diamine composites, filled with BN particles of diffe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003730/ https://www.ncbi.nlm.nih.gov/pubmed/33804649 http://dx.doi.org/10.3390/polym13060955 |
Sumario: | This work demonstrates that the application of even moderate pressures during cure can result in a remarkable enhancement of the thermal conductivity of composites of epoxy and boron nitride (BN). Two systems have been used: epoxy-thiol and epoxy–diamine composites, filled with BN particles of different sizes and types: 2, 30 and 180 μm platelets and 120 μm agglomerates. Using measurements of density and thermal conductivity, samples cured under pressures of 175 kPa and 2 MPa are compared with the same compositions cured at ambient pressure. The thermal conductivity increases for all samples cured under pressure, but the mechanism responsible depends on the composite system: For epoxy–diamine composites, the increase results principally from a reduction in the void content; for the epoxy–thiol system with BN platelets, the increase results from an improved matrix-particle interface; for the epoxy–thiol system with BN agglomerates, which has a thermal conductivity greater than 10 W/mK at 44.7 vol.% filler content, the agglomerates are deformed to give a significantly increased area of contact. These results indicate that curing under pressure is an effective means of achieving high conductivity in epoxy-BN composites. |
---|