Cargando…
The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans
In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003754/ https://www.ncbi.nlm.nih.gov/pubmed/33804592 http://dx.doi.org/10.3390/antibiotics10030325 |
_version_ | 1783671763961380864 |
---|---|
author | Shikura, Noriyasu Darbon, Emmanuelle Esnault, Catherine Deniset-Besseau, Ariane Xu, Delin Lejeune, Clara Jacquet, Eric Nhiri, Naima Sago, Laila Cornu, David Werten, Sebastiaan Martel, Cécile Virolle, Marie-Joelle |
author_facet | Shikura, Noriyasu Darbon, Emmanuelle Esnault, Catherine Deniset-Besseau, Ariane Xu, Delin Lejeune, Clara Jacquet, Eric Nhiri, Naima Sago, Laila Cornu, David Werten, Sebastiaan Martel, Cécile Virolle, Marie-Joelle |
author_sort | Shikura, Noriyasu |
collection | PubMed |
description | In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate. |
format | Online Article Text |
id | pubmed-8003754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80037542021-03-28 The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans Shikura, Noriyasu Darbon, Emmanuelle Esnault, Catherine Deniset-Besseau, Ariane Xu, Delin Lejeune, Clara Jacquet, Eric Nhiri, Naima Sago, Laila Cornu, David Werten, Sebastiaan Martel, Cécile Virolle, Marie-Joelle Antibiotics (Basel) Article In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate. MDPI 2021-03-20 /pmc/articles/PMC8003754/ /pubmed/33804592 http://dx.doi.org/10.3390/antibiotics10030325 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Shikura, Noriyasu Darbon, Emmanuelle Esnault, Catherine Deniset-Besseau, Ariane Xu, Delin Lejeune, Clara Jacquet, Eric Nhiri, Naima Sago, Laila Cornu, David Werten, Sebastiaan Martel, Cécile Virolle, Marie-Joelle The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans |
title | The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans |
title_full | The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans |
title_fullStr | The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans |
title_full_unstemmed | The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans |
title_short | The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans |
title_sort | phosin ppta plays a negative role in the regulation of antibiotic production in streptomyces lividans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003754/ https://www.ncbi.nlm.nih.gov/pubmed/33804592 http://dx.doi.org/10.3390/antibiotics10030325 |
work_keys_str_mv | AT shikuranoriyasu thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT darbonemmanuelle thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT esnaultcatherine thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT denisetbesseauariane thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT xudelin thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT lejeuneclara thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT jacqueteric thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT nhirinaima thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT sagolaila thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT cornudavid thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT wertensebastiaan thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT martelcecile thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT virollemariejoelle thephosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT shikuranoriyasu phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT darbonemmanuelle phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT esnaultcatherine phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT denisetbesseauariane phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT xudelin phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT lejeuneclara phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT jacqueteric phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT nhirinaima phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT sagolaila phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT cornudavid phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT wertensebastiaan phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT martelcecile phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans AT virollemariejoelle phosinpptaplaysanegativeroleintheregulationofantibioticproductioninstreptomyceslividans |