Cargando…

Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort

Prediabetes is closely related to excess body weight and adipose distribution. For this reason, we aimed to assess and compare the diagnostic usefulness of ten anthropometric adiposity indices to predict prediabetes. Cross-sectional study with 8188 overweight subjects free of type 2 diabetes from th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sánchez, Marta, Sánchez, Enric, Bermúdez-López, Marcelino, Torres, Gerard, Farràs-Sallés, Cristina, Pamplona, Reinald, Castro-Boqué, Eva, Valdivielso, José Manuel, Purroy, Francisco, Martínez-Alonso, Montserrat, Godoy, Pere, Mauricio, Dídac, Fernández, Elvira, Hernández, Marta, Rius, Ferran, Lecube, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003825/
https://www.ncbi.nlm.nih.gov/pubmed/33808883
http://dx.doi.org/10.3390/nu13031002
_version_ 1783671780695605248
author Sánchez, Marta
Sánchez, Enric
Bermúdez-López, Marcelino
Torres, Gerard
Farràs-Sallés, Cristina
Pamplona, Reinald
Castro-Boqué, Eva
Valdivielso, José Manuel
Purroy, Francisco
Martínez-Alonso, Montserrat
Godoy, Pere
Mauricio, Dídac
Fernández, Elvira
Hernández, Marta
Rius, Ferran
Lecube, Albert
author_facet Sánchez, Marta
Sánchez, Enric
Bermúdez-López, Marcelino
Torres, Gerard
Farràs-Sallés, Cristina
Pamplona, Reinald
Castro-Boqué, Eva
Valdivielso, José Manuel
Purroy, Francisco
Martínez-Alonso, Montserrat
Godoy, Pere
Mauricio, Dídac
Fernández, Elvira
Hernández, Marta
Rius, Ferran
Lecube, Albert
author_sort Sánchez, Marta
collection PubMed
description Prediabetes is closely related to excess body weight and adipose distribution. For this reason, we aimed to assess and compare the diagnostic usefulness of ten anthropometric adiposity indices to predict prediabetes. Cross-sectional study with 8188 overweight subjects free of type 2 diabetes from the ILERVAS project (NCT03228459). Prediabetes was diagnosed by levels of glycated hemoglobin (HbA1c). Total body adiposity indices [BMI, Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE) and Deurenberg’s formula] and abdominal adiposity (waist and neck circumferences, conicity index, waist to height ratio, Bonora’s equation, A body shape index, and body roundness index) were calculated. The area under the receiver-operating characteristic (ROC) curve, the best cutoff and the prevalence of prediabetes around this value were calculated for every anthropometric index. All anthropometric indices other than the A body adiposity were higher in men and women with prediabetes compared with controls (p < 0.001 for all). In addition, a slightly positive correlation was found between indices and HbA1c in both sexes (r ≤ 0.182 and p ≤ 0.026 for all). None of the measures achieved acceptable levels of discrimination in ROC analysis (area under the ROC ≤ 0.63 for all). Assessing BMI, the prevalence of prediabetes among men increased from 20.4% to 36.2% around the cutoff of 28.2 kg/m(2), with similar data among women (from 29.3 to 44.8% with a cutoff of 28.6 kg/m(2)). No lonely obesity index appears to be the perfect biomarker to use in clinical practice to detect individuals with prediabetes.
format Online
Article
Text
id pubmed-8003825
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80038252021-03-28 Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort Sánchez, Marta Sánchez, Enric Bermúdez-López, Marcelino Torres, Gerard Farràs-Sallés, Cristina Pamplona, Reinald Castro-Boqué, Eva Valdivielso, José Manuel Purroy, Francisco Martínez-Alonso, Montserrat Godoy, Pere Mauricio, Dídac Fernández, Elvira Hernández, Marta Rius, Ferran Lecube, Albert Nutrients Article Prediabetes is closely related to excess body weight and adipose distribution. For this reason, we aimed to assess and compare the diagnostic usefulness of ten anthropometric adiposity indices to predict prediabetes. Cross-sectional study with 8188 overweight subjects free of type 2 diabetes from the ILERVAS project (NCT03228459). Prediabetes was diagnosed by levels of glycated hemoglobin (HbA1c). Total body adiposity indices [BMI, Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE) and Deurenberg’s formula] and abdominal adiposity (waist and neck circumferences, conicity index, waist to height ratio, Bonora’s equation, A body shape index, and body roundness index) were calculated. The area under the receiver-operating characteristic (ROC) curve, the best cutoff and the prevalence of prediabetes around this value were calculated for every anthropometric index. All anthropometric indices other than the A body adiposity were higher in men and women with prediabetes compared with controls (p < 0.001 for all). In addition, a slightly positive correlation was found between indices and HbA1c in both sexes (r ≤ 0.182 and p ≤ 0.026 for all). None of the measures achieved acceptable levels of discrimination in ROC analysis (area under the ROC ≤ 0.63 for all). Assessing BMI, the prevalence of prediabetes among men increased from 20.4% to 36.2% around the cutoff of 28.2 kg/m(2), with similar data among women (from 29.3 to 44.8% with a cutoff of 28.6 kg/m(2)). No lonely obesity index appears to be the perfect biomarker to use in clinical practice to detect individuals with prediabetes. MDPI 2021-03-19 /pmc/articles/PMC8003825/ /pubmed/33808883 http://dx.doi.org/10.3390/nu13031002 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Sánchez, Marta
Sánchez, Enric
Bermúdez-López, Marcelino
Torres, Gerard
Farràs-Sallés, Cristina
Pamplona, Reinald
Castro-Boqué, Eva
Valdivielso, José Manuel
Purroy, Francisco
Martínez-Alonso, Montserrat
Godoy, Pere
Mauricio, Dídac
Fernández, Elvira
Hernández, Marta
Rius, Ferran
Lecube, Albert
Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort
title Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort
title_full Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort
title_fullStr Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort
title_full_unstemmed Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort
title_short Clinical Usefulness of Anthropometric Indices to Predict the Presence of Prediabetes. Data from the ILERVAS Cohort
title_sort clinical usefulness of anthropometric indices to predict the presence of prediabetes. data from the ilervas cohort
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003825/
https://www.ncbi.nlm.nih.gov/pubmed/33808883
http://dx.doi.org/10.3390/nu13031002
work_keys_str_mv AT sanchezmarta clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT sanchezenric clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT bermudezlopezmarcelino clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT torresgerard clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT farrassallescristina clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT pamplonareinald clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT castroboqueeva clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT valdivielsojosemanuel clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT purroyfrancisco clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT martinezalonsomontserrat clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT godoypere clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT mauriciodidac clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT fernandezelvira clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT hernandezmarta clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT riusferran clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT lecubealbert clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort
AT clinicalusefulnessofanthropometricindicestopredictthepresenceofprediabetesdatafromtheilervascohort