Cargando…
Prediction of Long-Term Stroke Recurrence Using Machine Learning Models
Background: The long-term risk of recurrent ischemic stroke, estimated to be between 17% and 30%, cannot be reliably assessed at an individual level. Our goal was to study whether machine-learning can be trained to predict stroke recurrence and identify key clinical variables and assess whether perf...
Autores principales: | Abedi, Vida, Avula, Venkatesh, Chaudhary, Durgesh, Shahjouei, Shima, Khan, Ayesha, Griessenauer, Christoph J, Li, Jiang, Zand, Ramin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003970/ https://www.ncbi.nlm.nih.gov/pubmed/33804724 http://dx.doi.org/10.3390/jcm10061286 |
Ejemplares similares
-
Sex disparity in long-term stroke recurrence and mortality in a rural population in the United States
por: Lambert, Clare, et al.
Publicado: (2020) -
Racial, Economic, and Health Inequality and COVID-19 Infection in the United States
por: Abedi, Vida, et al.
Publicado: (2020) -
Regional Association of Disability and SARS-CoV-2 Infection in 369 Counties of the United States
por: Olulana, Oluwaseyi, et al.
Publicado: (2020) -
Social Determinants of Stroke Hospitalization and Mortality in United States’ Counties
por: Yadav, Randhir Sagar, et al.
Publicado: (2022) -
Comparison of Long-Term Outcomes and Associated Factors between Younger and Older Rural Ischemic Stroke Patients
por: Chaudhary, Durgesh, et al.
Publicado: (2022)