Cargando…

Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker?

Altered metabolism including lipids is an emerging hallmark of breast cancer. The purpose of this study was to investigate if breast cancers exhibit different magnetic resonance spectroscopy (MRS)-based lipid composition than normal fibroglandular tissue (FGT). MRS spectra, using the stimulated echo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bitencourt, Almir, Sevilimedu, Varadan, Morris, Elizabeth A., Pinker, Katja, Thakur, Sunitha B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004005/
https://www.ncbi.nlm.nih.gov/pubmed/33801022
http://dx.doi.org/10.3390/diagnostics11030564
Descripción
Sumario:Altered metabolism including lipids is an emerging hallmark of breast cancer. The purpose of this study was to investigate if breast cancers exhibit different magnetic resonance spectroscopy (MRS)-based lipid composition than normal fibroglandular tissue (FGT). MRS spectra, using the stimulated echo acquisition mode sequence, were collected with a 3T scanner from patients with suspicious lesions and contralateral normal tissue. Fat peaks at 1.3 + 1.6 ppm (L13 + L16), 2.1 + 2.3 ppm (L21 + L23), 2.8 ppm (L28), 4.1 + 4.3 ppm (L41 + L43), and 5.2 + 5.3 ppm (L52 + L53) were quantified using LCModel software. The saturation index (SI), number of double bods (NBD), mono and polyunsaturated fatty acids (MUFA and PUFA), and mean chain length (MCL) were also computed. Results showed that mean concentrations of all lipid metabolites and PUFA were significantly lower in tumors compared with that of normal FGT (p ≤ 0.002 and 0.04, respectively). The measure best separating normal and tumor tissues after adjusting with multivariable analysis was L21 + L23, which yielded an area under the curve of 0.87 (95% CI: 0.75–0.98). Similar results were obtained between HER2 positive versus HER2 negative tumors. Hence, MRS-based lipid measurements may serve as independent variables in a multivariate approach to increase the specificity of breast cancer characterization.