Cargando…
Recurrence Plot and Machine Learning for Signal Quality Assessment of Photoplethysmogram in Mobile Environment
The purpose of this study was to develop a machine learning model that could accurately evaluate the quality of a photoplethysmogram based on the shape of the photoplethysmogram and the phase relevance in a pulsatile waveform without requiring complicated pre-processing. Photoplethysmograms were rec...
Autores principales: | Roh, Donggeun, Shin, Hangsik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004064/ https://www.ncbi.nlm.nih.gov/pubmed/33804794 http://dx.doi.org/10.3390/s21062188 |
Ejemplares similares
-
Photoplethysmogram Analysis and Applications: An Integrative Review
por: Park, Junyung, et al.
Publicado: (2022) -
Photoplethysmogram based vascular aging assessment using the deep convolutional neural network
por: Shin, Hangsik, et al.
Publicado: (2022) -
Vascular Aging Estimation Based on Artificial Neural Network Using Photoplethysmogram Waveform Decomposition: Retrospective Cohort Study
por: Park, Junyung, et al.
Publicado: (2022) -
Optimal Signal Quality Index for Photoplethysmogram Signals
por: Elgendi, Mohamed
Publicado: (2016) -
Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography
por: Han, Sangjin, et al.
Publicado: (2019)