Cargando…
Involvement of Bcl-xL in Neuronal Function and Development
The B-cell lymphoma (Bcl-2) family of proteins are mainly known for their role in the regulation of apoptosis by preventing pore formation at the mitochondrial outer membrane and subsequent caspase activation. However, Bcl-2 proteins also have non-canonical functions, independent of apoptosis. Indee...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004157/ https://www.ncbi.nlm.nih.gov/pubmed/33801158 http://dx.doi.org/10.3390/ijms22063202 |
Sumario: | The B-cell lymphoma (Bcl-2) family of proteins are mainly known for their role in the regulation of apoptosis by preventing pore formation at the mitochondrial outer membrane and subsequent caspase activation. However, Bcl-2 proteins also have non-canonical functions, independent of apoptosis. Indeed, the cell death machinery, including Bcl-2 homologs, was reported to be essential for the central nervous system (CNS), notably with respect to synaptic transmission and axon pruning. Here we focused on Bcl-xL, a close Bcl-2 homolog, which plays a major role in neuronal development, as bclx knock out mice prematurely die at embryonic day 13.5, showing massive apoptosis in the CNS. In addition, we present evidence that Bcl-xL fosters ATP generation by the mitochondria to fuel high energy needs by neurons, and its contribution to synaptic transmission. We discuss how Bcl-xL might control local and transient activation of caspases in neurons without causing cell death. Consistently, Bcl-xL may contribute to morphological changes, such as sprouting and retractation of axon branches, in the context of CNS plasticity. Regarding degenerative diseases and aging, a better understanding of the numerous roles of the cell death machinery in neurons may have future clinical implications. |
---|