Cargando…
On the Classical Capacity of General Quantum Gaussian Measurement
In this paper, we consider the classical capacity problem for Gaussian measurement channels. We establish Gaussianity of the average state of the optimal ensemble in the general case and discuss the Hypothesis of Gaussian Maximizers concerning the structure of the ensemble. Then, we consider the cas...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004196/ https://www.ncbi.nlm.nih.gov/pubmed/33801112 http://dx.doi.org/10.3390/e23030377 |
Sumario: | In this paper, we consider the classical capacity problem for Gaussian measurement channels. We establish Gaussianity of the average state of the optimal ensemble in the general case and discuss the Hypothesis of Gaussian Maximizers concerning the structure of the ensemble. Then, we consider the case of one mode in detail, including the dual problem of accessible information of a Gaussian ensemble. Our findings are relevant to practical situations in quantum communications where the receiver is Gaussian (say, a general-dyne detection) and concatenation of the Gaussian channel and the receiver can be considered as one Gaussian measurement channel. Our efforts in this and preceding papers are then aimed at establishing full Gaussianity of the optimal ensemble (usually taken as an assumption) in such schemes. |
---|