Cargando…

How Does Endometriosis Lead to Ovarian Cancer? The Molecular Mechanism of Endometriosis-Associated Ovarian Cancer Development

SIMPLE SUMMARY: Driver gene mutations have been identified in not only various types of endometriosis which are considered the origin of endometriosis-associated ovarian cancer but also the normal endometrium which is considered the origin of endometriosis. We focused on genomic linkage from normal...

Descripción completa

Detalles Bibliográficos
Autores principales: Yachida, Nozomi, Yoshihara, Kosuke, Yamaguchi, Manako, Suda, Kazuaki, Tamura, Ryo, Enomoto, Takayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004227/
https://www.ncbi.nlm.nih.gov/pubmed/33809880
http://dx.doi.org/10.3390/cancers13061439
Descripción
Sumario:SIMPLE SUMMARY: Driver gene mutations have been identified in not only various types of endometriosis which are considered the origin of endometriosis-associated ovarian cancer but also the normal endometrium which is considered the origin of endometriosis. We focused on genomic linkage from normal endometrium to ovarian endometriosis and endometriosis-associated ovarian cancer (EAOC) and summarized the current knowledge of the commonality and differentiation of genomic features in the uterine endometrium, endometriosis, and EAOC. In addition, we have proposed molecular mechanism of ovarian carcinogenesis from the normal endometrium via endometriosis based on genomic alterations. This review is expected to contribute to research for the prevention of endometriosis and EAOC. ABSTRACT: Numerous epidemiological and histopathological studies support the notion that clear cell and endometrioid carcinomas derive from ovarian endometriosis. Accordingly, these histologic types are referred to as “endometriosis-associated ovarian cancer” (EAOC). Although the uterine endometrium is also considered an origin of endometriosis, the molecular mechanism involved in transformation of the uterine endometrium to EAOC via ovarian endometriosis has not yet been clarified. Recent studies based on high-throughput sequencing technology have revealed that cancer-associated gene mutations frequently identified in EAOC may exist in the normal uterine endometrial epithelium and ovarian endometriotic epithelium. The continuum of genomic alterations from the uterine endometrium to endometriosis and EAOC has been described, though the significance of cancer-associated gene mutations in the uterine endometrium or endometriosis remains unclear. In this review, we summarize current knowledge regarding the molecular characteristics of the uterine endometrium, endometriosis, and EAOC and discuss the molecular mechanism of cancer development from the normal endometrium through endometriosis in an effort to prevent EAOC.