Cargando…
Autonomous Learning of New Environments with a Robotic Team Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ Sensing and Machine Learning
This paper describes and demonstrates an autonomous robotic team that can rapidly learn the characteristics of environments that it has never seen before. The flexible paradigm is easily scalable to multi-robot, multi-sensor autonomous teams, and it is relevant to satellite calibration/validation an...
Autores principales: | Lary, David J., Schaefer, David, Waczak, John, Aker, Adam, Barbosa, Aaron, Wijeratne, Lakitha O. H., Talebi, Shawhin, Fernando, Bharana, Sadler, John, Lary, Tatiana, Lary, Matthew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004590/ https://www.ncbi.nlm.nih.gov/pubmed/33806854 http://dx.doi.org/10.3390/s21062240 |
Ejemplares similares
-
Decoding Physical and Cognitive Impacts of Particulate Matter Concentrations at Ultra-Fine Scales
por: Talebi, Shawhin, et al.
Publicado: (2022) -
Data-Driven EEG Band Discovery with Decision Trees
por: Talebi, Shawhin, et al.
Publicado: (2022) -
Using Machine Learning for the Calibration of Airborne Particulate Sensors
por: Wijeratne, Lakitha O.H., et al.
Publicado: (2019) -
Machine Learning for Light Sensor Calibration
por: Zhang, Yichao, et al.
Publicado: (2021) -
Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean
por: Aurin, Dirk, et al.
Publicado: (2018)