Cargando…
Non Stationary Multi-Armed Bandit: Empirical Evaluation of a New Concept Drift-Aware Algorithm
The Multi-Armed Bandit (MAB) problem has been extensively studied in order to address real-world challenges related to sequential decision making. In this setting, an agent selects the best action to be performed at time-step t, based on the past rewards received by the environment. This formulation...
Autores principales: | Cavenaghi, Emanuele, Sottocornola, Gabriele, Stella, Fabio, Zanker, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004723/ https://www.ncbi.nlm.nih.gov/pubmed/33807028 http://dx.doi.org/10.3390/e23030380 |
Ejemplares similares
-
Introduction to multi-armed bandits
por: Slivkins, Aleksandrs
Publicado: (2019) -
Risk-aware multi-armed bandit problem with application to portfolio selection
por: Huo, Xiaoguang, et al.
Publicado: (2017) -
The Perils of Misspecified Priors and Optional Stopping in Multi-Armed Bandits
por: Loecher, Markus
Publicado: (2021) -
Multi-Armed Bandits in Brain-Computer Interfaces
por: Heskebeck, Frida, et al.
Publicado: (2022) -
Bandit Algorithms for Website Optimization
por: White, John Myles
Publicado: (2013)