Cargando…
Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying
Attenuated Total Reflectance Infrared (ATR-IR) spectroscopy and texture measurements based on nitrogen adsorption-desorption isotherms are combined to characterize silica aerogel granules with different degrees of hydrophobicity. The aerogels were prepared from tetraethoxysilane via a room temperatu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004964/ https://www.ncbi.nlm.nih.gov/pubmed/33806761 http://dx.doi.org/10.3390/molecules26061796 |
_version_ | 1783672024448630784 |
---|---|
author | Shandurkov, Dimitar Ignatov, Petar Spassova, Ivanka Gutzov, Stoyan |
author_facet | Shandurkov, Dimitar Ignatov, Petar Spassova, Ivanka Gutzov, Stoyan |
author_sort | Shandurkov, Dimitar |
collection | PubMed |
description | Attenuated Total Reflectance Infrared (ATR-IR) spectroscopy and texture measurements based on nitrogen adsorption-desorption isotherms are combined to characterize silica aerogel granules with different degrees of hydrophobicity. The aerogels were prepared from tetraethoxysilane via a room temperature hydrolysis-gelation process, solvent exchange, hydrophobization, and drying at subcritical conditions. The dependencies between the texture properties, pore architectures, surface fractal dimensions, and degree of hydrophobicity of the samples are extracted from the ATR-IR spectra and the adsorption-desorption isotherms. The IR absorption in the region of the Si-O-Si and Si-OH vibrations is used for a description of the structural and chemical changes in aerogel powders connected with their surface hydrophobization. The Frenkel–Halsey–Hill (FHH) theory is applied to determine the surface fractal dimension of the powder species. |
format | Online Article Text |
id | pubmed-8004964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80049642021-03-29 Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying Shandurkov, Dimitar Ignatov, Petar Spassova, Ivanka Gutzov, Stoyan Molecules Article Attenuated Total Reflectance Infrared (ATR-IR) spectroscopy and texture measurements based on nitrogen adsorption-desorption isotherms are combined to characterize silica aerogel granules with different degrees of hydrophobicity. The aerogels were prepared from tetraethoxysilane via a room temperature hydrolysis-gelation process, solvent exchange, hydrophobization, and drying at subcritical conditions. The dependencies between the texture properties, pore architectures, surface fractal dimensions, and degree of hydrophobicity of the samples are extracted from the ATR-IR spectra and the adsorption-desorption isotherms. The IR absorption in the region of the Si-O-Si and Si-OH vibrations is used for a description of the structural and chemical changes in aerogel powders connected with their surface hydrophobization. The Frenkel–Halsey–Hill (FHH) theory is applied to determine the surface fractal dimension of the powder species. MDPI 2021-03-23 /pmc/articles/PMC8004964/ /pubmed/33806761 http://dx.doi.org/10.3390/molecules26061796 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shandurkov, Dimitar Ignatov, Petar Spassova, Ivanka Gutzov, Stoyan Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying |
title | Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying |
title_full | Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying |
title_fullStr | Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying |
title_full_unstemmed | Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying |
title_short | Spectral and Texture Properties of Hydrophobic Aerogel Powders Obtained from Room Temperature Drying |
title_sort | spectral and texture properties of hydrophobic aerogel powders obtained from room temperature drying |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004964/ https://www.ncbi.nlm.nih.gov/pubmed/33806761 http://dx.doi.org/10.3390/molecules26061796 |
work_keys_str_mv | AT shandurkovdimitar spectralandtexturepropertiesofhydrophobicaerogelpowdersobtainedfromroomtemperaturedrying AT ignatovpetar spectralandtexturepropertiesofhydrophobicaerogelpowdersobtainedfromroomtemperaturedrying AT spassovaivanka spectralandtexturepropertiesofhydrophobicaerogelpowdersobtainedfromroomtemperaturedrying AT gutzovstoyan spectralandtexturepropertiesofhydrophobicaerogelpowdersobtainedfromroomtemperaturedrying |