Cargando…
A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images
Recent studies indicate that detecting radiographic patterns on CT chest scans can yield high sensitivity and specificity for COVID-19 identification. In this paper, we scrutinize the effectiveness of deep learning models for semantic segmentation of pneumonia-infected area segmentation in CT images...
Autores principales: | Voulodimos, Athanasios, Protopapadakis, Eftychios, Katsamenis, Iason, Doulamis, Anastasios, Doulamis, Nikolaos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004971/ https://www.ncbi.nlm.nih.gov/pubmed/33810066 http://dx.doi.org/10.3390/s21062215 |
Ejemplares similares
-
Deep Learning for Computer Vision: A Brief Review
por: Voulodimos, Athanasios, et al.
Publicado: (2018) -
Towards Trustworthy Energy Disaggregation: A Review of Challenges, Methods, and Perspectives for Non-Intrusive Load Monitoring
por: Kaselimi, Maria, et al.
Publicado: (2022) -
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
por: Protopapadakis, Eftychios, et al.
Publicado: (2017) -
Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction
por: Kopsiaftis, George, et al.
Publicado: (2019) -
A review of non-invasive sensors and artificial intelligence models for diabetic foot monitoring
por: Kaselimi, Maria, et al.
Publicado: (2022)