Cargando…
Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea
Dimethylsulfoniopropionate (DMSP) is one of Earth’s most abundant organosulfur molecules. Recently, many marine heterotrophic bacteria were shown to produce DMSP, but few studies have combined culture-dependent and independent techniques to study their abundance, distribution, diversity and activity...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004995/ https://www.ncbi.nlm.nih.gov/pubmed/33810191 http://dx.doi.org/10.3390/microorganisms9030657 |
_version_ | 1783672031786565632 |
---|---|
author | Liu, Ji Zhang, Yunhui Liu, Jingli Zhong, Haohui Williams, Beth T. Zheng, Yanfen Curson, Andrew R. J. Sun, Chuang Sun, Hao Song, Delei Wagner Mackenzie, Brett Bermejo Martínez, Ana Todd, Jonathan D. Zhang, Xiao-Hua |
author_facet | Liu, Ji Zhang, Yunhui Liu, Jingli Zhong, Haohui Williams, Beth T. Zheng, Yanfen Curson, Andrew R. J. Sun, Chuang Sun, Hao Song, Delei Wagner Mackenzie, Brett Bermejo Martínez, Ana Todd, Jonathan D. Zhang, Xiao-Hua |
author_sort | Liu, Ji |
collection | PubMed |
description | Dimethylsulfoniopropionate (DMSP) is one of Earth’s most abundant organosulfur molecules. Recently, many marine heterotrophic bacteria were shown to produce DMSP, but few studies have combined culture-dependent and independent techniques to study their abundance, distribution, diversity and activity in seawater or sediment environments. Here we investigate bacterial DMSP production potential in East China Sea (ECS) samples. Total DMSP (DMSPt) concentration in ECS seawater was highest in surface waters (SW) where phytoplankton were most abundant, and it decreased with depth to near bottom waters. However, the percentage of DMSPt mainly apportioned to bacteria increased from the surface to the near bottom water. The highest DMSP concentration was detected in ECS oxic surface sediment (OSS) where phytoplankton were not abundant. Bacteria with the genetic potential to produce DMSP and relevant biosynthesis gene transcripts were prominent in all ECS seawater and sediment samples. Their abundance also increased with depth and was highest in the OSS samples. Microbial enrichments for DMSP-producing bacteria from sediment and seawater identified many novel taxonomic groups of DMSP-producing bacteria. Different profiles of DMSP-producing bacteria existed between seawater and sediment samples and there are still novel DMSP-producing bacterial groups to be discovered in these environments. This study shows that heterotrophic bacteria significantly contribute to the marine DMSP pool and that their contribution increases with water depth and is highest in seabed surface sediment where DMSP catabolic potential is lowest. Furthermore, distinct bacterial groups likely produce DMSP in seawater and sediment samples, and many novel producing taxa exist, especially in the sediment. |
format | Online Article Text |
id | pubmed-8004995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80049952021-03-29 Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea Liu, Ji Zhang, Yunhui Liu, Jingli Zhong, Haohui Williams, Beth T. Zheng, Yanfen Curson, Andrew R. J. Sun, Chuang Sun, Hao Song, Delei Wagner Mackenzie, Brett Bermejo Martínez, Ana Todd, Jonathan D. Zhang, Xiao-Hua Microorganisms Article Dimethylsulfoniopropionate (DMSP) is one of Earth’s most abundant organosulfur molecules. Recently, many marine heterotrophic bacteria were shown to produce DMSP, but few studies have combined culture-dependent and independent techniques to study their abundance, distribution, diversity and activity in seawater or sediment environments. Here we investigate bacterial DMSP production potential in East China Sea (ECS) samples. Total DMSP (DMSPt) concentration in ECS seawater was highest in surface waters (SW) where phytoplankton were most abundant, and it decreased with depth to near bottom waters. However, the percentage of DMSPt mainly apportioned to bacteria increased from the surface to the near bottom water. The highest DMSP concentration was detected in ECS oxic surface sediment (OSS) where phytoplankton were not abundant. Bacteria with the genetic potential to produce DMSP and relevant biosynthesis gene transcripts were prominent in all ECS seawater and sediment samples. Their abundance also increased with depth and was highest in the OSS samples. Microbial enrichments for DMSP-producing bacteria from sediment and seawater identified many novel taxonomic groups of DMSP-producing bacteria. Different profiles of DMSP-producing bacteria existed between seawater and sediment samples and there are still novel DMSP-producing bacterial groups to be discovered in these environments. This study shows that heterotrophic bacteria significantly contribute to the marine DMSP pool and that their contribution increases with water depth and is highest in seabed surface sediment where DMSP catabolic potential is lowest. Furthermore, distinct bacterial groups likely produce DMSP in seawater and sediment samples, and many novel producing taxa exist, especially in the sediment. MDPI 2021-03-22 /pmc/articles/PMC8004995/ /pubmed/33810191 http://dx.doi.org/10.3390/microorganisms9030657 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Liu, Ji Zhang, Yunhui Liu, Jingli Zhong, Haohui Williams, Beth T. Zheng, Yanfen Curson, Andrew R. J. Sun, Chuang Sun, Hao Song, Delei Wagner Mackenzie, Brett Bermejo Martínez, Ana Todd, Jonathan D. Zhang, Xiao-Hua Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea |
title | Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea |
title_full | Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea |
title_fullStr | Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea |
title_full_unstemmed | Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea |
title_short | Bacterial Dimethylsulfoniopropionate Biosynthesis in the East China Sea |
title_sort | bacterial dimethylsulfoniopropionate biosynthesis in the east china sea |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004995/ https://www.ncbi.nlm.nih.gov/pubmed/33810191 http://dx.doi.org/10.3390/microorganisms9030657 |
work_keys_str_mv | AT liuji bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT zhangyunhui bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT liujingli bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT zhonghaohui bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT williamsbetht bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT zhengyanfen bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT cursonandrewrj bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT sunchuang bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT sunhao bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT songdelei bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT wagnermackenziebrett bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT bermejomartinezana bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT toddjonathand bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea AT zhangxiaohua bacterialdimethylsulfoniopropionatebiosynthesisintheeastchinasea |