Cargando…
Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect
Biogenic ferrihydrite nanoparticles were synthesized as a result of the cultivation of Klebsiella oxytoca microorganisms. The distribution of nanoparticles in the body of laboratory animals and the physical properties of the nanoparticles were studied. The synthesized ferrihydrite nanoparticles are...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005073/ https://www.ncbi.nlm.nih.gov/pubmed/33810151 http://dx.doi.org/10.3390/biomedicines9030323 |
_version_ | 1783672049931124736 |
---|---|
author | Stolyar, Sergey V. Kolenchukova, Oksana A. Boldyreva, Anna V. Kudryasheva, Nadezda S. Gerasimova, Yulia V. Krasikov, Alexandr A. Yaroslavtsev, Roman N. Bayukov, Oleg A. Ladygina, Valentina P. Birukova, Elena A. |
author_facet | Stolyar, Sergey V. Kolenchukova, Oksana A. Boldyreva, Anna V. Kudryasheva, Nadezda S. Gerasimova, Yulia V. Krasikov, Alexandr A. Yaroslavtsev, Roman N. Bayukov, Oleg A. Ladygina, Valentina P. Birukova, Elena A. |
author_sort | Stolyar, Sergey V. |
collection | PubMed |
description | Biogenic ferrihydrite nanoparticles were synthesized as a result of the cultivation of Klebsiella oxytoca microorganisms. The distribution of nanoparticles in the body of laboratory animals and the physical properties of the nanoparticles were studied. The synthesized ferrihydrite nanoparticles are superparamagnetic at room temperature, and the characteristic blocking temperature is 23–25 K. The uncompensated moment of ferrihydrite particles was determined to be approximately 200 Bohr magnetons. In vitro testing of different concentrations of ferrihydrite nanoparticles for the functional activity of neutrophilic granulocytes by the chemiluminescence method showed an increase in the release of primary oxygen radicals by blood phagocytes when exposed to a minimum concentration and a decrease in secondary radicals when exposed to a maximum concentration. In vivo testing of ferrihydrite nanoparticles on Wister rats showed that a suspension of ferrihydrite nanoparticles has chronic toxicity, since it causes morphological changes in organs, mainly in the spleen, which are characterized by the accumulation of hemosiderin nanoparticles (stained blue according to Perls). Ferrihydrite can also directly or indirectly stimulate the proliferation and intracellular regeneration of hepatocytes. The partial detection of Perls-positive cells in the liver and kidneys can be explained by the rapid elimination from organs and the high dispersion of the nanomaterial. Thus, it is necessary to carry out studies of these processes at the systemic level, since the introduction of nanoparticles into the body is characterized by adaptive-proliferative processes, accompanied by the development of cell dystrophy and tension of the phagocytic system. |
format | Online Article Text |
id | pubmed-8005073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80050732021-03-29 Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect Stolyar, Sergey V. Kolenchukova, Oksana A. Boldyreva, Anna V. Kudryasheva, Nadezda S. Gerasimova, Yulia V. Krasikov, Alexandr A. Yaroslavtsev, Roman N. Bayukov, Oleg A. Ladygina, Valentina P. Birukova, Elena A. Biomedicines Article Biogenic ferrihydrite nanoparticles were synthesized as a result of the cultivation of Klebsiella oxytoca microorganisms. The distribution of nanoparticles in the body of laboratory animals and the physical properties of the nanoparticles were studied. The synthesized ferrihydrite nanoparticles are superparamagnetic at room temperature, and the characteristic blocking temperature is 23–25 K. The uncompensated moment of ferrihydrite particles was determined to be approximately 200 Bohr magnetons. In vitro testing of different concentrations of ferrihydrite nanoparticles for the functional activity of neutrophilic granulocytes by the chemiluminescence method showed an increase in the release of primary oxygen radicals by blood phagocytes when exposed to a minimum concentration and a decrease in secondary radicals when exposed to a maximum concentration. In vivo testing of ferrihydrite nanoparticles on Wister rats showed that a suspension of ferrihydrite nanoparticles has chronic toxicity, since it causes morphological changes in organs, mainly in the spleen, which are characterized by the accumulation of hemosiderin nanoparticles (stained blue according to Perls). Ferrihydrite can also directly or indirectly stimulate the proliferation and intracellular regeneration of hepatocytes. The partial detection of Perls-positive cells in the liver and kidneys can be explained by the rapid elimination from organs and the high dispersion of the nanomaterial. Thus, it is necessary to carry out studies of these processes at the systemic level, since the introduction of nanoparticles into the body is characterized by adaptive-proliferative processes, accompanied by the development of cell dystrophy and tension of the phagocytic system. MDPI 2021-03-22 /pmc/articles/PMC8005073/ /pubmed/33810151 http://dx.doi.org/10.3390/biomedicines9030323 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Stolyar, Sergey V. Kolenchukova, Oksana A. Boldyreva, Anna V. Kudryasheva, Nadezda S. Gerasimova, Yulia V. Krasikov, Alexandr A. Yaroslavtsev, Roman N. Bayukov, Oleg A. Ladygina, Valentina P. Birukova, Elena A. Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect |
title | Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect |
title_full | Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect |
title_fullStr | Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect |
title_full_unstemmed | Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect |
title_short | Biogenic Ferrihydrite Nanoparticles: Synthesis, Properties In Vitro and In Vivo Testing and the Concentration Effect |
title_sort | biogenic ferrihydrite nanoparticles: synthesis, properties in vitro and in vivo testing and the concentration effect |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005073/ https://www.ncbi.nlm.nih.gov/pubmed/33810151 http://dx.doi.org/10.3390/biomedicines9030323 |
work_keys_str_mv | AT stolyarsergeyv biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT kolenchukovaoksanaa biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT boldyrevaannav biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT kudryashevanadezdas biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT gerasimovayuliav biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT krasikovalexandra biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT yaroslavtsevromann biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT bayukovolega biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT ladyginavalentinap biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect AT birukovaelenaa biogenicferrihydritenanoparticlessynthesispropertiesinvitroandinvivotestingandtheconcentrationeffect |