Cargando…
Investigation of bioactivities of Taxus chinensis, Taxus cuspidata, and Taxus × media by gas chromatography-mass spectrometry
Taxus species have attracted much attention for their potency in cancer treatment. However, investigating the bioactivities of Taxus species is a complex task, due to their diversity, slow growth, and endangered state. The most important Taxus species in China are Taxus chinensis (T. chinensis), Tax...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005921/ https://www.ncbi.nlm.nih.gov/pubmed/33817320 http://dx.doi.org/10.1515/biol-2021-0032 |
Sumario: | Taxus species have attracted much attention for their potency in cancer treatment. However, investigating the bioactivities of Taxus species is a complex task, due to their diversity, slow growth, and endangered state. The most important Taxus species in China are Taxus chinensis (T. chinensis), Taxus cuspidata (T. cuspidata), and Taxus × media (T. media), which mainly grow in the northeastern region. This article probes deep into the differences among the leaves of T. chinensis, T. cuspidata, and T. media, with the aid of gas chromatography-mass spectrometry (GC-MS). Through GC-MS, 162 compounds were detected in the samples and found to contain 35 bioactive metabolites. On this basis, 20 metabolites with significant bioactivities (antibiotic, antioxidant, anticancer, and antiaging effects) were identified via unsupervised learning of principal component analysis and supervised learning of partial least squares-discriminant analysis. The results show that T. media has the most prominent antibiotic, antioxidant, and anticancer effects, while T. cuspidata has the most diverse and abundant metabolites that slow down aging. |
---|