Cargando…

Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks

[Image: see text] Metal–organic frameworks (MOFs) are a class of materials which exhibit permanent porosity, high surface area, and crystallinity. As a highly tunable middle ground between heterogeneous and homogeneous species, MOFs have the potential to suit a wide variety of applications, many of...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Eric M., Ilic, Stefan, Morris, Amanda J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006162/
https://www.ncbi.nlm.nih.gov/pubmed/33791427
http://dx.doi.org/10.1021/acscentsci.1c00047
Descripción
Sumario:[Image: see text] Metal–organic frameworks (MOFs) are a class of materials which exhibit permanent porosity, high surface area, and crystallinity. As a highly tunable middle ground between heterogeneous and homogeneous species, MOFs have the potential to suit a wide variety of applications, many of which require conductive materials. The continued development of conductive MOFs has provided an ever-growing library of materials with both intrinsic and guest-promoted conductivity, and factors which limit or enhance conductivity in MOFs have become more apparent. In this Outlook, the factors which are believed to influence the future of MOF conductivity most heavily are highlighted along with proposed methods of further developing these fields. Fundamental studies derived from these methods may provide pathways to raise conductivity across a wide range of MOF structures.