Cargando…
Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study
BACKGROUND: Targeted therapy and immunotherapy put forward higher demands for accurate lung cancer classification, as well as benign versus malignant disease discrimination. Digital whole slide images (WSIs) witnessed the transition from traditional histopathology to computational approaches, arousi...
Autores principales: | Yang, Huan, Chen, Lili, Cheng, Zhiqiang, Yang, Minglei, Wang, Jianbo, Lin, Chenghao, Wang, Yuefeng, Huang, Leilei, Chen, Yangshan, Peng, Sui, Ke, Zunfu, Li, Weizhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006383/ https://www.ncbi.nlm.nih.gov/pubmed/33775248 http://dx.doi.org/10.1186/s12916-021-01953-2 |
Ejemplares similares
-
Cancer diagnosis through a tandem of classifiers for digitized histopathological slides
por: Lichtblau, Daniel, et al.
Publicado: (2019) -
A correlation graph attention network for classifying chromosomal instabilities from histopathology whole-slide images
por: Liu, Liangliang, et al.
Publicado: (2023) -
Polymer nanofiber-based microchips for EGFR mutation analysis of circulating tumor cells in lung adenocarcinoma
por: Jiang, Wenting, et al.
Publicado: (2018) -
Identification of a cytokine-dominated immunosuppressive class in squamous cell lung carcinoma with implications for immunotherapy resistance
por: Yang, Minglei, et al.
Publicado: (2022) -
Automatic delineation of malignancy in histopathological head and neck slides
por: Mete, Mutlu, et al.
Publicado: (2007)