Cargando…
Factor graph-aggregated heterogeneous network embedding for disease-gene association prediction
BACKGROUND: Exploring the relationship between disease and gene is of great significance for understanding the pathogenesis of disease and developing corresponding therapeutic measures. The prediction of disease-gene association by computational methods accelerates the process. RESULTS: Many existin...
Autores principales: | He, Ming, Huang, Chen, Liu, Bo, Wang, Yadong, Li, Junyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006390/ https://www.ncbi.nlm.nih.gov/pubmed/33781206 http://dx.doi.org/10.1186/s12859-021-04099-3 |
Ejemplares similares
-
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction
por: Chen, Yali, et al.
Publicado: (2022) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021) -
PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis
por: Li, Junyi, et al.
Publicado: (2020) -
MEAHNE: miRNA–Disease Association Prediction Based on Semantic Information in a Heterogeneous Network
por: Huang, Chen, et al.
Publicado: (2022)