Cargando…

An area efficient and high throughput implementation of layered min-sum iterative construction a posteriori probability LDPC decoder

Area efficient and high speed forward error correcting codes decoder are the demand of many high speed next generation communication standards. This paper explores a low complexity decoding algorithm of low density parity check codes, called the min-sum iterative construction a posteriori probabilit...

Descripción completa

Detalles Bibliográficos
Autores principales: Raza, Hasnain, Zaidi, Syed Azhar Ali, Rashid, Aamir, Haider, Shafiq
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007033/
https://www.ncbi.nlm.nih.gov/pubmed/33780484
http://dx.doi.org/10.1371/journal.pone.0249269
Descripción
Sumario:Area efficient and high speed forward error correcting codes decoder are the demand of many high speed next generation communication standards. This paper explores a low complexity decoding algorithm of low density parity check codes, called the min-sum iterative construction a posteriori probability (MS-IC-APP), for this purpose. We performed the error performance analysis of MS-IC-APP for a (648,1296) regular QC-LDPC code and proposed an area and throughput optimized hardware implementation of MS-IC-APP. We proposed to use the layered scheduling of MS-IC-APP and performed other optimizations at architecture level to reduce the area and to increase the throughput of the decoder. Synthesis results show 6.95 times less area and 4 times high throughput as compared to the standard min-sum decoder. The area and throughput are also comparable to the improved variants of hard-decision bit-flipping (BF) decoders, whereas, the simulation results show a coding gain of 2.5 over the best implementation of BF decoder in terms of error performance.