Cargando…
Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning
Computational analysis is crucial to capitalize on the wealth of spatio-molecular information generated by mass spectrometry imaging (MSI) experiments. Currently, the spatial information available in MSI data is often under-utilized, due to the challenges of in-depth spatial pattern extraction. The...
Autores principales: | Zhang, Wanqiu, Claesen, Marc, Moerman, Thomas, Groseclose, M. Reid, Waelkens, Etienne, De Moor, Bart, Verbeeck, Nico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007517/ https://www.ncbi.nlm.nih.gov/pubmed/33646352 http://dx.doi.org/10.1007/s00216-021-03179-w |
Ejemplares similares
-
Automated Anatomical Interpretation of Ion Distributions
in Tissue: Linking Imaging Mass Spectrometry to Curated Atlases
por: Verbeeck, Nico, et al.
Publicado: (2014) -
Spatiochemical Characterization of the Pancreas Using
Mass Spectrometry Imaging and Topological Data Analysis
por: Derwae, Helena, et al.
Publicado: (2023) -
A mathematical comparison of non‐negative matrix factorization related methods with practical implications for the analysis of mass spectrometry imaging data
por: Nijs, Melanie, et al.
Publicado: (2021) -
Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
por: Alexandrov, Theodore, et al.
Publicado: (2011) -
Mapping the Lipids of Skin Sebaceous Glands and Hair Follicles by High Spatial Resolution MALDI Imaging Mass Spectrometry
por: Xie, Fang, et al.
Publicado: (2022)