Cargando…
Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery
Understanding the interactions among agricultural processes, soil, and plants is necessary for optimizing crop yield and productivity. This study focuses on developing effective monitoring and analysis methodologies that estimate key soil and plant properties. These methodologies include data acquis...
Autores principales: | Falco, Nicola, Wainwright, Haruko M., Dafflon, Baptiste, Ulrich, Craig, Soom, Florian, Peterson, John E., Brown, James Bentley, Schaettle, Karl B., Williamson, Malcolm, Cothren, Jackson D., Ham, Richard G., McEntire, Jay A., Hubbard, Susan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007594/ https://www.ncbi.nlm.nih.gov/pubmed/33782488 http://dx.doi.org/10.1038/s41598-021-86480-z |
Ejemplares similares
-
Surface parameters and bedrock properties covary across a mountainous watershed: Insights from machine learning and geophysics
por: Uhlemann, Sebastian, et al.
Publicado: (2022) -
The estimation of crop emergence in potatoes by UAV RGB imagery
por: Li, Bo, et al.
Publicado: (2019) -
Assessment of Soybean Lodging Using UAV Imagery and Machine Learning
por: Sarkar, Shagor, et al.
Publicado: (2023) -
An Ensemble Learning Model for Detecting Soybean Seedling Emergence in UAV Imagery
por: Zhang, Bo, et al.
Publicado: (2023) -
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022)