Cargando…

Evaluation of malignant effusions using MR-based T1 mapping

Our aim was to investigate the diagnostic yield of rapid T1-mapping for the differentiation of malignant and non-malignant effusions in an ex-vivo set up. T1-mapping was performed with a fast modified Look-Locker inversion-recovery (MOLLI) acquisition and a combined turbo spin-echo and inversion-rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuetting, D., Luetkens, J., Faron, A., Isaak, A., Attenberger, U., Pieper, C. C., Meffert, L., Jansen, C., Sprinkart, A., Kütting, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007641/
https://www.ncbi.nlm.nih.gov/pubmed/33782528
http://dx.doi.org/10.1038/s41598-021-86632-1
Descripción
Sumario:Our aim was to investigate the diagnostic yield of rapid T1-mapping for the differentiation of malignant and non-malignant effusions in an ex-vivo set up. T1-mapping was performed with a fast modified Look-Locker inversion-recovery (MOLLI) acquisition and a combined turbo spin-echo and inversion-recovery sequence (TMIX) as reference. A total of 13 titrated albumin-solutions as well as 48 samples (29 ascites/pleural effusions from patients with malignancy; 19 from patients without malignancy) were examined. Samples were classified as malignant-positive histology, malignant-negative histology and non-malignant negative histology. In phantom analysis both mapping techniques correlated with albumin-content (MOLLI: r = − 0.97, TMIX: r = − 0.98). MOLLI T1 relaxation times were shorter in malignancy-positive histology fluids (2237 ± 137 ms) than in malignancy-negative histology fluids (2423 ± 357 ms) as well as than in non-malignant-negative histology fluids (2651 ± 139 ms); post hoc test for all intergroup comparisons: < 0.05. ROC analysis for differentiation between malignant and non-malignant effusions (malignant positive histology vs. all other) showed an (AUC) of 0.89 (95% CI 0.77–0.96). T1 mapping allows for non-invasive differentiation of malignant and non-malignant effusions in an ex-vivo set up.