Cargando…
Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast
Cell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007731/ https://www.ncbi.nlm.nih.gov/pubmed/33782415 http://dx.doi.org/10.1038/s41536-021-00133-3 |
Sumario: | Cell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems have been realised and (some) success stories have been witnessed over the years in clinical and commercial arenas, in vitro organogenesis is far from becoming a standard way of care. This limited technology transfer is largely attributed to scalability-associated costs, considering that the development of a borderline 3D implantable device requires very high number of functional cells and prolonged ex vivo culture periods. Herein, we critically discuss advancements and shortfalls of scaffold-free cell-based tissue engineering strategies, along with pioneering concepts that have the potential to transform regenerative and reparative medicine. |
---|