Cargando…

Compensatory image of the stability of people with multiple sclerosis and atrial vertigo based on posturography examination

Pathophysiology of balance disorders due to multiple sclerosis (MS) and atrial vertigo (AV) is different. We evaluated posture stability when maintaining balance in people with MS presenting symptoms of ataxia and those with AV. We included 45 women (15 with MS; 15 with AV; 15 controls). A posturogr...

Descripción completa

Detalles Bibliográficos
Autores principales: Kahl, Oliwer, Wierzbicka, Ewelina, Dębińska, Magdalena, Mraz, Maciej, Mraz, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007820/
https://www.ncbi.nlm.nih.gov/pubmed/33782416
http://dx.doi.org/10.1038/s41598-021-85983-z
Descripción
Sumario:Pathophysiology of balance disorders due to multiple sclerosis (MS) and atrial vertigo (AV) is different. We evaluated posture stability when maintaining balance in people with MS presenting symptoms of ataxia and those with AV. We included 45 women (15 with MS; 15 with AV; 15 controls). A posturography platform was used to measure balance parameters. To characterize the image of stability and the compensation of balance disorders, the surface area of the stabilogram (SAS), vision control index (VCI) and the vision-motion control index (VMCI) were used. The stability image of people with MS and AV with eyes open (p = 0.002), with eyes closed (p = 0.080) and with visual biofeedback (p = 0.0008) differed significantly. SAS depended on visual biofeedback regardless of the occurrence of balance disorders and was the basis for determining the compensatory share of vision-motor coordination. Differences in VCI between groups were insignificant. VMCI was significantly higher in people with balance disorders than in those without, but similar in the MS and AV groups. The image of stability is different in people with MS and AV. Thanks to visual biofeedback, it becomes possible to launch effective vision-motor coordination when compensating balance disorders. VCI may become the measure of compensation for balance disorders.