Cargando…
A Relational Adaptive Neural Model for Joint Entity and Relation Extraction
Relation extraction is a popular subtask in natural language processing (NLP). In the task of entity relation joint extraction, overlapping entities and multi-type relation extraction in overlapping triplets remain a challenging problem. The classification of relations by sharing the same probabilit...
Autores principales: | Duan, Guiduo, Miao, Jiayu, Huang, Tianxi, Luo, Wenlong, Hu, Dekun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008121/ https://www.ncbi.nlm.nih.gov/pubmed/33796016 http://dx.doi.org/10.3389/fnbot.2021.635492 |
Ejemplares similares
-
A Relation-Oriented Model With Global Context Information for Joint Extraction of Overlapping Relations and Entities
por: Han, Huihui, et al.
Publicado: (2022) -
A neural joint model for entity and relation extraction from biomedical text
por: Li, Fei, et al.
Publicado: (2017) -
DWFed: A statistical- heterogeneity-based dynamic weighted model aggregation algorithm for federated learning
por: Chen, Aiguo, et al.
Publicado: (2022) -
RTJTN: Relational Triplet Joint Tagging Network for Joint Entity and Relation Extraction
por: Yang, Zhenyu, et al.
Publicado: (2021) -
Span-based single-stage joint entity-relation extraction model
por: Han, Dongchen, et al.
Publicado: (2023)