Cargando…

Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair

Peripheral nerve regeneration requires stepwise and well-organized establishment of microenvironment. Since local delivery of VEGF-A in peripheral nerve repair is expected to promote angiogenesis in the microenvironment and Schwann cells (SCs) play critical role in nerve repair, combination of VEGF...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ping, Tong, Zan, Luo, Lihua, Zhao, Yanan, Chen, Feixiang, Li, Yinping, Huselstein, Céline, Ye, Qifa, Ye, Qingsong, Chen, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008177/
https://www.ncbi.nlm.nih.gov/pubmed/33842738
http://dx.doi.org/10.1016/j.bioactmat.2021.03.020
_version_ 1783672646035046400
author Wu, Ping
Tong, Zan
Luo, Lihua
Zhao, Yanan
Chen, Feixiang
Li, Yinping
Huselstein, Céline
Ye, Qifa
Ye, Qingsong
Chen, Yun
author_facet Wu, Ping
Tong, Zan
Luo, Lihua
Zhao, Yanan
Chen, Feixiang
Li, Yinping
Huselstein, Céline
Ye, Qifa
Ye, Qingsong
Chen, Yun
author_sort Wu, Ping
collection PubMed
description Peripheral nerve regeneration requires stepwise and well-organized establishment of microenvironment. Since local delivery of VEGF-A in peripheral nerve repair is expected to promote angiogenesis in the microenvironment and Schwann cells (SCs) play critical role in nerve repair, combination of VEGF and Schwann cells may lead to efficient peripheral nerve regeneration. VEGF-A overexpressing Schwann cells were established and loaded into the inner wall of hydroxyethyl cellulose/soy protein isolate/polyaniline sponge (HSPS) conduits. When HSPS is mechanically distorted, it still has high durability of strain strength, thus, can accommodate unexpected strain of nerve tissues in motion. A 10 mm nerve defect rat model was used to test the repair performance of the HSPS-SC (VEGF) conduits, meanwhile the HSPS, HSPS-SC, HSPS-VEGF conduits and autografts were worked as controls. The immunofluorescent co-staining of GFP/VEGF-A, Ki67 and MBP showed that the VEGF-A overexpressing Schwann cells could promote the proliferation, migration and differentiation of Schwann cells as the VEGF-A was secreted from the VEGF-A overexpressing Schwann cells. The nerve repair performance of the multifunctional and flexible conduits was examined though rat behavioristics, electrophysiology, nerve innervation to gastrocnemius muscle (GM), toluidine blue (TB) staining, transmission electron microscopy (TEM) and NF200/S100 double staining in the regenerated nerve. The results displayed that the effects on the repair of peripheral nerves in HSPS-SC (VEGF) group was the best among the conduits groups and closed to autografts. HSPS-SC (VEGF) group exhibited notably increased CD31(+) endothelial cells and activation of VEGFR2/ERK signaling pathway in the regenerated nerve tissues, which probably contributed to the improved nerve regeneration. Altogether, the comprehensive strategy including VEGF overexpressing Schwann cells-mediated and HSPS conduit-guided peripheral nerve repair provides a new avenue for nerve tissue engineering.
format Online
Article
Text
id pubmed-8008177
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-80081772021-04-08 Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair Wu, Ping Tong, Zan Luo, Lihua Zhao, Yanan Chen, Feixiang Li, Yinping Huselstein, Céline Ye, Qifa Ye, Qingsong Chen, Yun Bioact Mater Article Peripheral nerve regeneration requires stepwise and well-organized establishment of microenvironment. Since local delivery of VEGF-A in peripheral nerve repair is expected to promote angiogenesis in the microenvironment and Schwann cells (SCs) play critical role in nerve repair, combination of VEGF and Schwann cells may lead to efficient peripheral nerve regeneration. VEGF-A overexpressing Schwann cells were established and loaded into the inner wall of hydroxyethyl cellulose/soy protein isolate/polyaniline sponge (HSPS) conduits. When HSPS is mechanically distorted, it still has high durability of strain strength, thus, can accommodate unexpected strain of nerve tissues in motion. A 10 mm nerve defect rat model was used to test the repair performance of the HSPS-SC (VEGF) conduits, meanwhile the HSPS, HSPS-SC, HSPS-VEGF conduits and autografts were worked as controls. The immunofluorescent co-staining of GFP/VEGF-A, Ki67 and MBP showed that the VEGF-A overexpressing Schwann cells could promote the proliferation, migration and differentiation of Schwann cells as the VEGF-A was secreted from the VEGF-A overexpressing Schwann cells. The nerve repair performance of the multifunctional and flexible conduits was examined though rat behavioristics, electrophysiology, nerve innervation to gastrocnemius muscle (GM), toluidine blue (TB) staining, transmission electron microscopy (TEM) and NF200/S100 double staining in the regenerated nerve. The results displayed that the effects on the repair of peripheral nerves in HSPS-SC (VEGF) group was the best among the conduits groups and closed to autografts. HSPS-SC (VEGF) group exhibited notably increased CD31(+) endothelial cells and activation of VEGFR2/ERK signaling pathway in the regenerated nerve tissues, which probably contributed to the improved nerve regeneration. Altogether, the comprehensive strategy including VEGF overexpressing Schwann cells-mediated and HSPS conduit-guided peripheral nerve repair provides a new avenue for nerve tissue engineering. KeAi Publishing 2021-03-21 /pmc/articles/PMC8008177/ /pubmed/33842738 http://dx.doi.org/10.1016/j.bioactmat.2021.03.020 Text en © 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wu, Ping
Tong, Zan
Luo, Lihua
Zhao, Yanan
Chen, Feixiang
Li, Yinping
Huselstein, Céline
Ye, Qifa
Ye, Qingsong
Chen, Yun
Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair
title Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair
title_full Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair
title_fullStr Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair
title_full_unstemmed Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair
title_short Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair
title_sort comprehensive strategy of conduit guidance combined with vegf producing schwann cells accelerates peripheral nerve repair
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008177/
https://www.ncbi.nlm.nih.gov/pubmed/33842738
http://dx.doi.org/10.1016/j.bioactmat.2021.03.020
work_keys_str_mv AT wuping comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT tongzan comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT luolihua comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT zhaoyanan comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT chenfeixiang comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT liyinping comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT huselsteinceline comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT yeqifa comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT yeqingsong comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair
AT chenyun comprehensivestrategyofconduitguidancecombinedwithvegfproducingschwanncellsacceleratesperipheralnerverepair