Cargando…
Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients
IMPORTANCE: Comparisons of antimicrobial use among hospitals are difficult to interpret owing to variations in patient case mix. Risk-adjustment strategies incorporating larger numbers of variables haves been proposed as a method to improve comparisons for antimicrobial stewardship assessments. OBJE...
Autores principales: | Moehring, Rebekah W., Phelan, Matthew, Lofgren, Eric, Nelson, Alicia, Dodds Ashley, Elizabeth, Anderson, Deverick J., Goldstein, Benjamin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008288/ https://www.ncbi.nlm.nih.gov/pubmed/33779743 http://dx.doi.org/10.1001/jamanetworkopen.2021.3460 |
Ejemplares similares
-
1019. Defining electronic patient phenotypes to inform risk-adjustment strategies in hospital antimicrobial use comparisons
por: Moehring, Rebekah W, et al.
Publicado: (2019) -
1018. Using prediction modeling to inform risk-adjustment strategy for hospital antimicrobial use: Can we predict who gets an inpatient antimicrobial?
por: Moehring, Rebekah W, et al.
Publicado: (2019) -
Use of Contact Networks to Estimate Potential Pathogen Risk Exposure in Hospitals
por: Madhobi, Kaniz Fatema, et al.
Publicado: (2022) -
1823. Signal or Noise? A Comparison of Methods to Identify Outliers in Antimicrobial Use (AU)
por: Moehring, Rebekah W, et al.
Publicado: (2018) -
Estimated Methicillin-Resistant Staphylococcus aureus Decolonization in Intensive Care Units Associated With Single-Application Chlorhexidine Gluconate or Mupirocin
por: Lofgren, Eric T., et al.
Publicado: (2021)