Cargando…
Small sample sizes: A big data problem in high-dimensional data analysis
In many experiments and especially in translational and preclinical research, sample sizes are (very) small. In addition, data designs are often high dimensional, i.e. more dependent than independent replications of the trial are observed. The present paper discusses the applicability of max t-test-...
Autores principales: | Konietschke, Frank, Schwab, Karima, Pauly, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008424/ https://www.ncbi.nlm.nih.gov/pubmed/33228480 http://dx.doi.org/10.1177/0962280220970228 |
Ejemplares similares
-
Semi‐parametric analysis of overdispersed count and metric data with varying follow‐up times: Asymptotic theory and small sample approximations
por: Konietschke, Frank, et al.
Publicado: (2018) -
Ranking procedures for repeated measures designs with missing data: Estimation, testing and asymptotic
theory
por: Rubarth, Kerstin, et al.
Publicado: (2021) -
Feature Selection and Feature Stability Measurement Method for High-Dimensional Small Sample Data Based on Big Data Technology
por: Huang, Chengyuan
Publicado: (2021) -
Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes
por: Frömke, Cornelia, et al.
Publicado: (2008) -
Filtering High-Dimensional Methylation Marks With Extremely Small Sample Size: An Application to Gastric Cancer Data
por: Chen, Xin, et al.
Publicado: (2021)