Cargando…
A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008967/ https://www.ncbi.nlm.nih.gov/pubmed/33791593 http://dx.doi.org/10.1038/s42256-020-0173-6 |
_version_ | 1783672793064275968 |
---|---|
author | Mukherjee, Pritam Zhou, Mu Lee, Edward Schicht, Anne Balagurunathan, Yoganand Napel, Sandy Gillies, Robert Wong, Simon Thieme, Alexander Leung, Ann Gevaert, Olivier |
author_facet | Mukherjee, Pritam Zhou, Mu Lee, Edward Schicht, Anne Balagurunathan, Yoganand Napel, Sandy Gillies, Robert Wong, Simon Thieme, Alexander Leung, Ann Gevaert, Olivier |
author_sort | Mukherjee, Pritam |
collection | PubMed |
description | Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet, a shallow convolutional neural network for predicting outcomes of NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité – Universitätsmedizin (n=84). We show that outcomes from LungNet are predictive of overall survival in all four independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate interpretation of CT images for lung cancer stratification and prognostication. |
format | Online Article Text |
id | pubmed-8008967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-80089672021-03-30 A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data Mukherjee, Pritam Zhou, Mu Lee, Edward Schicht, Anne Balagurunathan, Yoganand Napel, Sandy Gillies, Robert Wong, Simon Thieme, Alexander Leung, Ann Gevaert, Olivier Nat Mach Intell Article Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet, a shallow convolutional neural network for predicting outcomes of NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité – Universitätsmedizin (n=84). We show that outcomes from LungNet are predictive of overall survival in all four independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate interpretation of CT images for lung cancer stratification and prognostication. 2020-05-18 2020-05 /pmc/articles/PMC8008967/ /pubmed/33791593 http://dx.doi.org/10.1038/s42256-020-0173-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Mukherjee, Pritam Zhou, Mu Lee, Edward Schicht, Anne Balagurunathan, Yoganand Napel, Sandy Gillies, Robert Wong, Simon Thieme, Alexander Leung, Ann Gevaert, Olivier A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data |
title | A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data |
title_full | A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data |
title_fullStr | A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data |
title_full_unstemmed | A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data |
title_short | A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data |
title_sort | shallow convolutional neural network predicts prognosis of lung cancer patients in multi-institutional ct-image data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008967/ https://www.ncbi.nlm.nih.gov/pubmed/33791593 http://dx.doi.org/10.1038/s42256-020-0173-6 |
work_keys_str_mv | AT mukherjeepritam ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT zhoumu ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT leeedward ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT schichtanne ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT balagurunathanyoganand ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT napelsandy ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT gilliesrobert ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT wongsimon ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT thiemealexander ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT leungann ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT gevaertolivier ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT mukherjeepritam shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT zhoumu shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT leeedward shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT schichtanne shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT balagurunathanyoganand shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT napelsandy shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT gilliesrobert shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT wongsimon shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT thiemealexander shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT leungann shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata AT gevaertolivier shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata |