Cargando…

A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data

Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukherjee, Pritam, Zhou, Mu, Lee, Edward, Schicht, Anne, Balagurunathan, Yoganand, Napel, Sandy, Gillies, Robert, Wong, Simon, Thieme, Alexander, Leung, Ann, Gevaert, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008967/
https://www.ncbi.nlm.nih.gov/pubmed/33791593
http://dx.doi.org/10.1038/s42256-020-0173-6
_version_ 1783672793064275968
author Mukherjee, Pritam
Zhou, Mu
Lee, Edward
Schicht, Anne
Balagurunathan, Yoganand
Napel, Sandy
Gillies, Robert
Wong, Simon
Thieme, Alexander
Leung, Ann
Gevaert, Olivier
author_facet Mukherjee, Pritam
Zhou, Mu
Lee, Edward
Schicht, Anne
Balagurunathan, Yoganand
Napel, Sandy
Gillies, Robert
Wong, Simon
Thieme, Alexander
Leung, Ann
Gevaert, Olivier
author_sort Mukherjee, Pritam
collection PubMed
description Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet, a shallow convolutional neural network for predicting outcomes of NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité – Universitätsmedizin (n=84). We show that outcomes from LungNet are predictive of overall survival in all four independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate interpretation of CT images for lung cancer stratification and prognostication.
format Online
Article
Text
id pubmed-8008967
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-80089672021-03-30 A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data Mukherjee, Pritam Zhou, Mu Lee, Edward Schicht, Anne Balagurunathan, Yoganand Napel, Sandy Gillies, Robert Wong, Simon Thieme, Alexander Leung, Ann Gevaert, Olivier Nat Mach Intell Article Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet, a shallow convolutional neural network for predicting outcomes of NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité – Universitätsmedizin (n=84). We show that outcomes from LungNet are predictive of overall survival in all four independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate interpretation of CT images for lung cancer stratification and prognostication. 2020-05-18 2020-05 /pmc/articles/PMC8008967/ /pubmed/33791593 http://dx.doi.org/10.1038/s42256-020-0173-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Mukherjee, Pritam
Zhou, Mu
Lee, Edward
Schicht, Anne
Balagurunathan, Yoganand
Napel, Sandy
Gillies, Robert
Wong, Simon
Thieme, Alexander
Leung, Ann
Gevaert, Olivier
A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
title A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
title_full A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
title_fullStr A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
title_full_unstemmed A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
title_short A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
title_sort shallow convolutional neural network predicts prognosis of lung cancer patients in multi-institutional ct-image data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008967/
https://www.ncbi.nlm.nih.gov/pubmed/33791593
http://dx.doi.org/10.1038/s42256-020-0173-6
work_keys_str_mv AT mukherjeepritam ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT zhoumu ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT leeedward ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT schichtanne ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT balagurunathanyoganand ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT napelsandy ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT gilliesrobert ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT wongsimon ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT thiemealexander ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT leungann ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT gevaertolivier ashallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT mukherjeepritam shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT zhoumu shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT leeedward shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT schichtanne shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT balagurunathanyoganand shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT napelsandy shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT gilliesrobert shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT wongsimon shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT thiemealexander shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT leungann shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata
AT gevaertolivier shallowconvolutionalneuralnetworkpredictsprognosisoflungcancerpatientsinmultiinstitutionalctimagedata