Cargando…
Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis
Clustering and cell type classification are important steps in single-cell RNA-seq (scRNA-seq) analysis. As more and more scRNA-seq data are becoming available, supervised cell type classification methods that utilize external well-annotated source data start to gain popularity over unsupervised clu...
Autores principales: | Hu, Jian, Li, Xiangjie, Hu, Gang, Lyu, Yafei, Susztak, Katalin, Li, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009055/ https://www.ncbi.nlm.nih.gov/pubmed/33817554 http://dx.doi.org/10.1038/s42256-020-00233-7 |
Ejemplares similares
-
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
por: Li, Xiangjie, et al.
Publicado: (2020) -
SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
por: Yang, Lu, et al.
Publicado: (2017) -
Active learning framework with iterative clustering for bioimage classification
por: Kutsuna, Natsumaro, et al.
Publicado: (2012) -
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
por: Wang, Xuran, et al.
Publicado: (2019) -
A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
por: Lakkis, Justin, et al.
Publicado: (2021)