Cargando…
Mechanochemical symmetry breaking during morphogenesis of lateral-line sensory organs
Actively regulated symmetry breaking, which is ubiquitous in biological cells, underlies phenomena such as directed cellular movement and morphological polarization. Here we investigate how an organ-level polarity pattern emerges through symmetry breaking at the cellular level during the formation o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009062/ https://www.ncbi.nlm.nih.gov/pubmed/33790985 http://dx.doi.org/10.1038/s41567-020-0894-9 |
Sumario: | Actively regulated symmetry breaking, which is ubiquitous in biological cells, underlies phenomena such as directed cellular movement and morphological polarization. Here we investigate how an organ-level polarity pattern emerges through symmetry breaking at the cellular level during the formation of a mechanosensory organ. Combining theory, genetic perturbations, and in vivo imaging, we study the development and regeneration of the fluid-motion sensors in the zebrafish’s lateral line. We find that two interacting symmetry-breaking events — one mediated by biochemical signaling and the other by cellular mechanics — give rise to precise rotations of cell pairs, which produce a mirror-symmetric polarity pattern in the receptor organ. |
---|