Cargando…
Enhancing COVID-19 tracking apps with human activity recognition using a deep convolutional neural network and HAR-images
With the emergence of COVID-19, mobile health applications have increasingly become crucial in contact tracing, information dissemination, and pandemic control in general. Apps warn users if they have been close to an infected person for sufficient time, and therefore potentially at risk. The distan...
Autores principales: | D’Angelo, Gianni, Palmieri, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009079/ https://www.ncbi.nlm.nih.gov/pubmed/33814729 http://dx.doi.org/10.1007/s00521-021-05913-y |
Ejemplares similares
-
Toward real-time and efficient cardiovascular monitoring for COVID-19 patients by 5G-enabled wearable medical devices: a deep learning approach
por: Tan, Liang, et al.
Publicado: (2021) -
Res-CovNet: an internet of medical health things driven COVID-19 framework using transfer learning
por: Madhavan, Mangena Venu, et al.
Publicado: (2021) -
Linguistic methods in healthcare application and COVID-19 variants classification
por: Ogiela, Marek R., et al.
Publicado: (2021) -
A smart healthcare framework for detection and monitoring of COVID-19 using IoT and cloud computing
por: Nasser, Nidal, et al.
Publicado: (2021) -
PA during the COVID-19 outbreak in China: a cross-sectional study
por: Nie, Yingjun, et al.
Publicado: (2021)