Cargando…
Deep neural networks identify sequence context features predictive of transcription factor binding
Transcription factors (TFs) bind DNA by recognizing specific sequence motifs, typically of length 6–12bp. A motif can occur many thousands of times in the human genome, but only a subset of those sites are actually bound. Here we present a machine learning framework leveraging existing convolutional...
Autores principales: | Zheng, An, Lamkin, Michael, Zhao, Hanqing, Wu, Cynthia, Su, Hao, Gymrek, Melissa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009085/ https://www.ncbi.nlm.nih.gov/pubmed/33796819 http://dx.doi.org/10.1038/s42256-020-00282-y |
Ejemplares similares
-
A flexible ChIP-sequencing simulation toolkit
por: Zheng, An, et al.
Publicado: (2021) -
Identifying Intrinsically Disordered Protein Regions through a Deep Neural Network with Three Novel Sequence Features
por: Zhao, Jiaxiang, et al.
Publicado: (2022) -
Haptools: a toolkit for admixture and haplotype analysis
por: Massarat, Arya R, et al.
Publicado: (2023) -
Using DNA sequencers as stethoscopes
por: Gymrek, Melissa, et al.
Publicado: (2011) -
Identifying genomic islands with deep neural networks
por: Assaf, Rida, et al.
Publicado: (2021)