Cargando…
Olfactory perception of food abundance regulates dietary restriction-mediated longevity via a brain-to-gut signal
The role of food nutrients in mediating the positive effect of dietary restriction (DR) on longevity has been extensively characterized, but how non-nutrient food components regulate lifespan is not well understood. Here, we show that food-associated odors shorten the lifespan of C. elegans under DR...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009090/ https://www.ncbi.nlm.nih.gov/pubmed/33796867 http://dx.doi.org/10.1038/s43587-021-00039-1 |
Sumario: | The role of food nutrients in mediating the positive effect of dietary restriction (DR) on longevity has been extensively characterized, but how non-nutrient food components regulate lifespan is not well understood. Here, we show that food-associated odors shorten the lifespan of C. elegans under DR but not those fed ad libitum, revealing a specific effect of food odors on DR-mediated longevity. Food odors act on a neural circuit comprising the sensory neurons ADF and CEP, and the interneuron RIC. This olfactory circuit signals the gut to suppress DR-mediated longevity via octopamine, the invertebrate homolog of norepinephrine, by regulating the energy sensor AMPK through a Gq-PLCβ-CaMKK-dependent mechanism. In mouse primary cells, we find that norepinephrine signaling regulates AMPK through a similar mechanism. Our results identify a brain-gut axis that regulates DR-mediated longevity by relaying olfactory information about food abundance from the brain to the gut. |
---|