Cargando…
Development and multicenter validation of a CT-based radiomics signature for predicting severe COVID-19 pneumonia
OBJECTIVES: To develop and validate a radiomics nomogram for timely predicting severe COVID-19 pneumonia. MATERIALS AND METHODS: Three hundred and sixteen COVID-19 patients (246 non-severe and 70 severe) were retrospectively collected from two institutions and allocated to training, validation, and...
Autores principales: | Li, Liang, Wang, Li, Zeng, Feifei, Peng, Gongling, Ke, Zan, Liu, Huan, Zha, Yunfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009273/ https://www.ncbi.nlm.nih.gov/pubmed/33786655 http://dx.doi.org/10.1007/s00330-021-07727-x |
Ejemplares similares
-
Radiomics analysis based on lumbar spine CT to detect osteoporosis
por: Jiang, Yan-Wei, et al.
Publicado: (2022) -
Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy
por: Xu, Qinmei, et al.
Publicado: (2021) -
Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility
por: Schurink, Niels W., et al.
Publicado: (2021) -
Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2
por: Fang, Xu, et al.
Publicado: (2020) -
Dynamic 3D radiomics analysis using artificial intelligence to assess the stage of COVID-19 on CT images
por: Cai, Shengping, et al.
Publicado: (2022)