Cargando…
Correction: Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window
Autores principales: | Wang, Bozhi, Fei, Teng, Kang, Yuhao, Li, Meng, Du, Qingyun, Han, Meng, Dong, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009350/ https://www.ncbi.nlm.nih.gov/pubmed/33784341 http://dx.doi.org/10.1371/journal.pone.0249618 |
Ejemplares similares
-
Understanding the spatial dimension of natural language by measuring the spatial semantic similarity of words through a scalable geospatial context window
por: Wang, Bozhi, et al.
Publicado: (2020) -
Computationally scalable geospatial network and routing analysis through multi-level spatial clustering.
por: Chambers, Jonathan
Publicado: (2020) -
Semantic Similarity to Known Second Language Words Impacts Learning of New Meanings
por: Zhang, Yuanyue, et al.
Publicado: (2018) -
A novel multi-word paradigm for investigating semantic context effects in language production
por: van Scherpenberg, Cornelia, et al.
Publicado: (2020) -
The Effect of Semantic Similarity on Learning Ambiguous Words in a Second Language: An Event-Related Potential Study
por: Zhang, Yuanyue, et al.
Publicado: (2020)