Cargando…
Pros and Cons for Fluorescent in Situ Hybridization, Karyotyping and Next Generation Sequencing for Diagnosis and Follow-up of Multiple Myeloma
Multiple myeloma (MM) is one of the plasma cell-related hematological malignancies exceeding 10.0% of all marrow cells, and they make a paraprotein that is a marker of the disease. Myeloma is one of the most common types of hematological malignancies in humans. Genetic bio-markers have been used for...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009570/ https://www.ncbi.nlm.nih.gov/pubmed/33816073 http://dx.doi.org/10.2478/bjmg-2020-0020 |
Sumario: | Multiple myeloma (MM) is one of the plasma cell-related hematological malignancies exceeding 10.0% of all marrow cells, and they make a paraprotein that is a marker of the disease. Myeloma is one of the most common types of hematological malignancies in humans. Genetic bio-markers have been used for prognostic markers in patients diagnosed with MM. The genetic and genomic changes have been identified using karyotyping, fluorescent in situ hybridization (FISH), next generation sequencing (NGS), specifically whole-genome sequencing or exome sequencing. Circulatory plasma cells, circulating free DNA (cfD-NA) and microRNAs (miRNAs) comprised in liquid biopsy are potentially used in diagnosis/prognosis of MM. In this study, we analyzed and compared results of karyo-typing, FISH and NGS in 35 MM cases. Diagnostic strategies are expanding rapidly and newly developed NGS-based testing may help the understanding of the complexities of genetic alterations in karyotypically normal cases. |
---|