Cargando…
Onsite real-time detection of covid-like-virus transmission through air using spark-induced plasma spectroscopy
In March 2020, COVID-19 was officially classified as a pandemic and as a consequence people have adopted strenuous measures to prevent infection, such as the wearing of PPE and self-quarantining, with no knowledge of when the measures will no longer be necessary. Coronavirus has long been known to b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009694/ https://www.ncbi.nlm.nih.gov/pubmed/33736392 http://dx.doi.org/10.1016/j.scitotenv.2020.144725 |
Sumario: | In March 2020, COVID-19 was officially classified as a pandemic and as a consequence people have adopted strenuous measures to prevent infection, such as the wearing of PPE and self-quarantining, with no knowledge of when the measures will no longer be necessary. Coronavirus has long been known to be non-infectious when airborne; however, studies are starting to show that the virus can infect through airborne transmission and can remain airborne for a significant period of time. In the present study, a spark-induced plasma spectroscopy was devised to characterize the air propagation of the virus in real-time. The risk of air propagation was evaluated in terms of changes in virus concentration with respect to distance traveled and measurement time. Thus, our study provides a benchmark for performing real-time detection of virus propagation and instantaneous monitoring of coronavirus in the air. |
---|