Cargando…
Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model
Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. Around the world, more and more people are suffering from OSA. Because of the limitation of monitor equipment, many people with OSA remain undetected. Therefore, we propose a sleep-monitoring model based on single-channel...
Autores principales: | Zhang, Junming, Tang, Zhen, Gao, Jinfeng, Lin, Li, Liu, Zhiliang, Wu, Haitao, Liu, Fang, Yao, Ruxian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009718/ https://www.ncbi.nlm.nih.gov/pubmed/33859679 http://dx.doi.org/10.1155/2021/5594733 |
Ejemplares similares
-
Intelligent automatic sleep staging model based on CNN and LSTM
por: Zhuang, Lan, et al.
Publicado: (2022) -
Automatic Detection of Atrial Fibrillation Based on CNN-LSTM and Shortcut Connection
por: Ping, Yongjie, et al.
Publicado: (2020) -
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Shoeibi, Afshin, et al.
Publicado: (2021) -
NLOS Identification in WLANs Using Deep LSTM with CNN Features
por: Nguyen, Viet-Hung, et al.
Publicado: (2018) -
A Deep CNN-LSTM Framework for Fast Video Coding
por: Bouaafia, Soulef, et al.
Publicado: (2020)